Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Experimental Neurobiology ; : 25-32, 2017.
Article in English | WPRIM | ID: wpr-30379

ABSTRACT

Akt (also known as protein kinase B, PKB) has been seen to play a role in astrocyte activation of neuroprotection; however, the underlying mechanism on deregulation of Akt signaling in brain injuries is not fully understood. We investigated the role of carboxy-terminal modulator protein (CTMP), an endogenous Akt inhibitor, in brain injury following kainic acid (KA)-induced neurodegeneration of mouse hippocampus. In control mice, there was a weak signal for CTMP in the hippocampus, but CTMP was markedly increased in the astrocytes 3 days after KA treatment. To further investigate the effectiveness of Akt signaling, the phosphorylation of CTMP was examined. KA treatment induced an increased p-CTMP expression in the astrocytes of hippocampus at 1 day. LPS/IFN-γ-treatment on primary astrocytes promoted the p-CTMP was followed by phosphorylation of Akt and finally upregulation of CTMP and p-CREB. Time-dependent expression of p-CTMP, p-Akt, p-CREB, and CTMP indicate that LPS/IFN-γ-induced phosphorylation of CTMP can activate Akt/CREB signaling, whereas lately emerging enhancement of CTMP can inhibit it. These results suggest that elevation of CTMP in the astrocytes may suppress Akt activity and ultimately negatively affect the outcome of astrocyte activation (astroglisiois). Early time point enhancers of phosphorylation of CTMP and/or late time inhibitors specifically targeting CTMP may be beneficial in astrocyte activation for neuroprotection within treatment in neuroinflammatory conditions.


Subject(s)
Animals , Mice , Astrocytes , Brain Injuries , Hippocampus , Kainic Acid , Neuroprotection , Phosphorylation , Proto-Oncogene Proteins c-akt , Up-Regulation
2.
Experimental Neurobiology ; : 133-138, 2015.
Article in English | WPRIM | ID: wpr-175044

ABSTRACT

Growth differentiation factor 15 (GDF15) is, a member of the transforming growth factor beta (TGF-beta) superfamily of proteins. Although GDF15 is well established as a potent neurotrophic factor for neurons, little is known about its role in glial cells under neuropathological conditions. We monitored GDF15 expression in astrocyte activation after a kainic acid (KA)-induced neurodegeneration in the ICR mice hippocampus. In control, GDF15 immunoreactivity (IR) was evident in the neuronal layer of the hippocampus; however, GDF15 expression had increased in activated astrocytes throughout the hippocampal region at day 3 after the treatment with KA. LPS treatment in astrocytes dramatically increased GDF15 expression in primary astrocytes. In addition, LPS treatment resulted in the decrease of the IkappaB-alpha degradation and increase of the phosphorylation level of RelA/p65. These results indicate that GDF15 has a potential link to NF-kappaB activation, making GDF15 a valuable target for modulating inflammatory conditions.


Subject(s)
Animals , Mice , Astrocytes , Growth Differentiation Factor 15 , Hippocampus , Kainic Acid , Mice, Inbred ICR , Neuroglia , Neurons , NF-kappa B , Phosphorylation , Transforming Growth Factor beta
3.
Experimental & Molecular Medicine ; : e58-2013.
Article in English | WPRIM | ID: wpr-209545

ABSTRACT

Salivary function in mammals may be defective for various reasons, such as aging, Sjogren's syndrome or radiation therapy in head and neck cancer patients. Recently, tissue-specific stem cell therapy has attracted public attention as a next-generation therapeutic reagent. In the present study, we isolated tissue-specific stem cells from the human submandibular salivary gland (hSGSCs). To efficiently isolate and amplify hSGSCs in large amounts, we developed a culture system (lasting 4-5 weeks) without any selection. After five passages, we obtained adherent cells that expressed mesenchymal stem cell surface antigen markers, such as CD44, CD49f, CD90 and CD105, but not the hematopoietic stem cell markers, CD34 and CD45, and that were able to undergo adipogenic, osteogenic and chondrogenic differentiation. In addition, hSGSCs were differentiated into amylase-expressing cells by using a two-step differentiation method. Transplantation of hSGSCs to radiation-damaged rat salivary glands rescued hyposalivation and body weight loss, restored acinar and duct cell structure, and decreased the amount of apoptotic cells. These data suggest that the isolated hSGSCs, which may have characteristics of mesenchymal-like stem cells, could be used as a cell therapy agent for the damaged salivary gland.


Subject(s)
Animals , Humans , Male , Rats , Amylases/genetics , Antigens, CD/genetics , Apoptosis , Cell Differentiation , Mesenchymal Stem Cells/cytology , Radiation Injuries, Experimental , Rats, Wistar , Regeneration , Salivary Glands/cytology , Salivation , Stem Cell Transplantation
SELECTION OF CITATIONS
SEARCH DETAIL